Únete y Recibe Nuestras Publicaciones Por Correo (GRATIS)

Escribe tu dirección de correo:

Verifica en el correo no deseado.

FACEBOOK

Mostrando las entradas con la etiqueta Physics. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Physics. Mostrar todas las entradas

DOWNLOAD BOOK

Contents
Introduction .................................................. 1
1. Basic concepts in nuclear physics ......................... 9
1.1 Nucleons and leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 General properties of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Nuclear radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Binding energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Mass units and measurements . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Quantum states of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Nuclear forces and interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 The deuteron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.2 The Yukawa potential and its generalizations . . . . . . . . 35
1.4.3 Origin of the Yukawa potential . . . . . . . . . . . . . . . . . . . . . 38
1.4.4 From forces to interactions . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5 Nuclear reactions and decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6.1 Energy-momentum conservation . . . . . . . . . . . . . . . . . . . . 44
1.6.2 Angular momentum and parity (non)conservation . . . . 46
1.6.3 Additive quantum numbers . . . . . . . . . . . . . . . . . . . . . . . . 46
1.6.4 Quantum theory of conservation laws . . . . . . . . . . . . . . . 48
1.7 Charge independence and isospin . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.7.1 Isospin space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.7.2 One-particle states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.7.3 The generalized Pauli principle . . . . . . . . . . . . . . . . . . . . . 55
1.7.4 Two-nucleon system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.7.5 Origin of isospin symmetry; n-p mass difference . . . . . . 56
1.8 Deformed nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2. Nuclear models and stability.............................. 67
2.1 Mean potential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2 The Liquid-Drop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2.1 The Bethe–Weizs¨acker mass formula . . . . . . . . . . . . . . . 74X Contents
2.3 The Fermi gas model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3.1 Volume and surface energies . . . . . . . . . . . . . . . . . . . . . . . 79
2.3.2 The asymmetry energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 The shell model and magic numbers . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 The shell model and the spin-orbit interaction . . . . . . . 85
2.4.2 Some consequences of nuclear shell structure . . . . . . . . . 88
2.5 β-instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.6 α-instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.7 Nucleon emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.8 The production of super-heavy elements . . . . . . . . . . . . . . . . . . . 100
2.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3. Nuclear reactions ......................................... 107
3.1 Cross-sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.1.1 Generalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.1.2 Differential cross-sections. . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.1.3 Inelastic and total cross-sections. . . . . . . . . . . . . . . . . . . . 112
3.1.4 The uses of cross-sections. . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1.5 General characteristics of cross-sections . . . . . . . . . . . . . 115
3.2 Classical scattering on a fixed potential . . . . . . . . . . . . . . . . . . . 121
3.2.1 Classical cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.3 Quantum mechanical scattering on a fixed potential . . . . . . . . 126
3.3.1 Asymptotic states and their normalization . . . . . . . . . . . 127
3.3.2 Cross-sections in quantum perturbation theory . . . . . . . 129
3.3.3 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.4 Quasi-elastic scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.3.5 Scattering of quantum wave packets . . . . . . . . . . . . . . . . 136
3.4 Particle–particle scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.4.1 Scattering of two free particles . . . . . . . . . . . . . . . . . . . . . 143
3.4.2 Scattering of a free particle on a bound particle . . . . . . 146
3.4.3 Scattering on a charge distribution . . . . . . . . . . . . . . . . . 149
3.4.4 Electron–nucleus scattering . . . . . . . . . . . . . . . . . . . . . . . . 151
3.4.5 Electron–nucleon scattering . . . . . . . . . . . . . . . . . . . . . . . . 153
3.5 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.6 Nucleon–nucleus and nucleon–nucleon scattering. . . . . . . . . . . . 161
3.6.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.6.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.7 Coherent scattering and the refractive index . . . . . . . . . . . . . . . 169
3.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Contents XI
4. Nuclear decays and fundamental interactions ............. 175
4.1 Decay rates, generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.1.1 Natural width, branching ratios . . . . . . . . . . . . . . . . . . . . 175
4.1.2 Measurement of decay rates . . . . . . . . . . . . . . . . . . . . . . . 176
4.1.3 Calculation of decay rates . . . . . . . . . . . . . . . . . . . . . . . . 178
4.1.4 Phase space and two-body decays . . . . . . . . . . . . . . . . . . 183
4.1.5 Detailed balance and thermal equilibrium . . . . . . . . . . . 184
4.2 Radiative decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2.1 Electric-dipole transitions . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.2.2 Higher multi-pole transitions . . . . . . . . . . . . . . . . . . . . . . . 190
4.2.3 Internal conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.3 Weak interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.3.1 Neutron decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.3.2 β-decay of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.3.3 Electron-capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.3.4 Neutrino mass and helicity . . . . . . . . . . . . . . . . . . . . . . . . 209
4.3.5 Neutrino detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.3.6 Muon decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.4 Families of quarks and leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.4.1 Neutrino mixing and weak interactions. . . . . . . . . . . . . . 221
4.4.2 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.4.3 Quark mixing and weak interactions . . . . . . . . . . . . . . . . 232
4.4.4 Electro-weak unification . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
4.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5. Radioactivity and all that ................................ 245
5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.2 Sources of radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.2.1 Fossil radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
5.2.2 Cosmogenic radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5.2.3 Artificial radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.3 Passage of particles through matter. . . . . . . . . . . . . . . . . . . . . . . 256
5.3.1 Heavy charged particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
5.3.2 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.3.3 Electrons and positrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.3.4 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.3.5 Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
5.4 Radiation dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.5 Applications of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.5.1 Medical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.5.2 Nuclear dating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
5.5.3 Other uses of radioactivity . . . . . . . . . . . . . . . . . . . . . . . . 280
5.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282XII Contents
6. Fission.................................................... 285
6.1 Nuclear energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.2 Fission products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.3 Fission mechanism, fission barrier . . . . . . . . . . . . . . . . . . . . . . . . 290
6.4 Fissile materials and fertile materials . . . . . . . . . . . . . . . . . . . . . . 295
6.5 Chain reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
6.6 Moderators, neutron thermalization. . . . . . . . . . . . . . . . . . . . . . . 299
6.7 Neutron transport in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.7.1 The transport equation in a simple uniform spherically
symmetric medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.7.2 The Lorentz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.7.3 Divergence, critical mass . . . . . . . . . . . . . . . . . . . . . . . . . . 306
6.8 Nuclear reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
6.8.1 Thermal reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.8.2 Fast neutron reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.8.3 Accelerator-coupled sub-critical reactors. . . . . . . . . . . . . 319
6.8.4 Treatment and re-treatment of nuclear fuel . . . . . . . . . . 322
6.9 The Oklo prehistoric nuclear reactor . . . . . . . . . . . . . . . . . . . . . . 323
6.10 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7. Fusion .................................................... 329
7.1 Fusion reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.1.1 The Coulomb barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.1.2 Reaction rate in a medium . . . . . . . . . . . . . . . . . . . . . . . . 335
7.1.3 Resonant reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.2 Reactor performance criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7.3 Magnetic confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.4 Inertial confinement by lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
7.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8. Nuclear Astrophysics ..................................... 351
8.1 Stellar Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1.1 Classical stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
8.1.2 Degenerate stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.2 Nuclear burning stages in stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.2.1 Hydrogen burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.2.2 Helium burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
8.2.3 Advanced nuclear-burning stages . . . . . . . . . . . . . . . . . . . 369
8.2.4 Core-collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
8.3 Stellar nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.3.1 Solar-system abundances . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.3.2 Production of A < 60 nuclei . . . . . . . . . . . . . . . . . . . . . . . 376
8.3.3 A > 60: the s-, r- and p-processes. . . . . . . . . . . . . . . . . . . 376Contents XIII
8.4 Nuclear astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
8.4.1 Solar Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
8.4.2 Supernova neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
8.4.3 γ-astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
9. Nuclear Cosmology ....................................... 397
9.1 The Universe today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
9.1.1 The visible Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
9.1.2 Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
9.1.3 Cold dark matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
9.1.4 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
9.1.5 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
9.1.6 The vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
9.2 The expansion of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
9.2.1 The scale factor a(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
9.3 Gravitation and the Friedmann equation . . . . . . . . . . . . . . . . . . 410
9.4 High-redshift supernovae and the vacuum energy . . . . . . . . . . . 416
9.5 Reaction rates in the early Universe . . . . . . . . . . . . . . . . . . . . . . 416
9.6 Electrons, positrons and neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 420
9.7 Cosmological nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
9.8 Wimps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
A. Relativistic kinematics .................................... 441
B. Accelerators .............................................. 445
C. Time-dependent perturbation theory ..................... 451
C.0.1 Transition rates between two states. . . . . . . . . . . . . . . . . 451
C.0.2 Limiting forms of the delta function . . . . . . . . . . . . . . . . 453
D. Neutron transport ........................................ 455
D.0.3 The Boltzmann transport equation . . . . . . . . . . . . . . . . . 455
D.0.4 The Lorentz equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
E. Solutions and Hints for Selected Exercises ................ 461
F. Tables of numerical values ................................ 469
G. Table of Nuclei ........................................... 471
References .................................................... 507
Index ......................................................... 511

Eng Book- Fundamentals in Nuclear Physics- Download Free PDF


DOWNLOAD BOOK

Contents 
1. Introduction
2. Electric Field and Equipotential
3. Networks and Wheatstone Bridge
4. Ohm’s Law
5. External Field of a Bar Magnet and Inverse Square Law
6. Oscillators and Oscilloscope
7. RC Circuits
8. Ray Tracing
9. Focal Length of Lenses
10. Refraction
11. Diffraction Grating
12. Atomic Spectra

Eng Book- General Physics- Download Free PDF


DOWNLOAD COURSE

Things on the earth’s surface – chairs, houses, people - stay on the earth unless
subjected to extreme forces. We all stay here due to the gravity of the earth. This has
been recognized for thousands of years. The earth also rotates on its polar axis once per
day. This has been recognized only for a few hundred years. This rotation also produces
a force that tends to throw things outward from the axis.
On of the objections to earth rotation was this outward force. It was ask “Why
don’t we all fly off the earth?”. To some extent we do. But the gravitational attraction
of the earth is about 300 times as strong as the rotational outward force, so we stay put.
However this force does have it’s effects. It causes the earth to change shape, being a
little larger at the equator than at the poles. (By about 1/300 of course.)
One effect of this history is the way “gravity” is defined in geodesy. “Gravity” is
taken as the observed acceleration. This is the sum of the two effects. Therefore you
must be careful when reading technical books and articles mentioning “gravity”. Iit is
important to know who is writing and which definition of “gravity” is used. Here we will
use the geodestist nomenclature:
Newtonian Gravitation The physics book attraction
Rotational Effects Centrifugal Acceleration
Gravity The sum of these two.

Eng Course- Introduction to Earth Gravity- Download Free PDF


DOWNLOAD COURSE

Aristotle’s classification of motion
● Natural motion
● every object in the universe has a proper
place determined by a combination of four
elements: earth, water, air, and fire
● any object not in its proper place will strive to
get there
examples:
– stones fall
– puffs of smoke rise

Eng Course- Aristotelian Physics- Download Free PDF


DOWNLOAD COURSE

This lesson will enable students to:
 Describe how atoms are the building blocks of matter
 Explain the relationship between atoms, elements, molecules and compounds
 Build a model of an atom and a molecule
 Interpret element information from the Periodic Table
 Discuss the historical development of the study of matter, including contributions of
notable scientists.

Eng Course- Atoms and Molecules- Download Free PDF


DOWNLOAD COURSE

ANCIENT GREEK PHILOSOPHY was divided into three sciences: physics, ethics, and logic. This division is perfectly suitable to the nature of the thing; and the only improvement that can be made in it is to add the principle on which it is based, so that we may both satisfy ourselves
of its completeness, and also be able to determine correctly the necessary subdivisions.

Eng Course- FUNDAMENTAL PRINCIPLES OF THE METAPHYSIC OF MORALS- Download Free PDF


DOWNLOAD COURSE

CONTENTS 
Grade Levels; Time Required; Objectives;

Disciplines Encompassed; Key Terms;

Prerequisite Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Part 1: Understanding the absorption of energy
at the surface of the Earth.
Question: Does the type of the ground surface
influence its temperature? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Part 2: How a change in water phase affects
surface temperatures.
Question: How important is the evaporation of
water in cooling a surface? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Part 3: Determining what controls the temperature
of the land surface.
Question 1: If my town grows, will it impact the
area’s temperature? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Question 2: Why are the summer temperatures in
the desert southwest so much higher than at the
same latitude in the southeast? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Appendix A: Bibliography/Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Appendix B: Answer Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Appendix C: National Education Standards. . . . . . . . . . . . . . . . . . . . . . . 11
Appendix D: Problem-Based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Appendix E: TRMM Introduction/Instruments . . . . . . . . . . . . . . . . . . . . 15
Appendix F: Temperature Tables
Phoenix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Pittsburgh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Appendix G: Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Eng Course- All About Energy- Download Free PDF

Ultimos Documentos en PDF