Únete y Recibe Nuestras Publicaciones Por Correo (GRATIS)

Escribe tu dirección de correo:

Verifica en el correo no deseado.

FACEBOOK

, ,

Eng Course- QUANTUM PHYSICS (of Atoms, Molecules, Solids, Nuclei, and Particles)- Download Free PDF




DOWNLOAD COURSE


CONTENTS 
1 THERMAL RADIATION AND PLANCK'S POSTULATE  1
1-1 Introduction  2
1-2 Thermal Radiation  2
1-3 Classical Theory of Cavity Radiation  6
1-4 Planck's Theory of Cavity Radiation  13
1-5 The Use of Planck's Radiation Law in Thermometry  19
1-6 Planck's Postulate and Its Implications  20
1-7 A Bit of Quantum History  21
2 PHOTONS—PARTICLELIKE PROPERTIES OF RADIATION  26
2-1 Introduction  27
2-2 The Photoelectric Effect  27
2-3 Einstein's Quantum Theory of the Photoelectric Effect  29
2-4 The Compton Effect  34
2-5 The Dual Nature of Electromagnetic Radiation  40
2-6 Photons and X-Ray Production  40
2-7 Pair Production and Pair Annihilation  43
2-8 Cross Sections for Photon Absorption and Scattering  48
3 DE BROGLIE'S POSTULATE—WAVELIKE PROPERTIES
OF PARTICLES  55
3-1 Matter Waves  56
3-2 The Wave-Particle Duality  62
3-3 The Uncertainty Principle  65
3-4 Properties of Matter Waves  69
3-5 Some Consequences of the Uncertainty Principle  77
3-6 The Philosophy of Quantum Theory  79
4 BOHR'S MODEL OF THE ATOM  85
4-1 Thomson's Model  86
4-2 Rutherford's Model  90
4-3 The Stability of the Nuclear Atom  95
4-4 Atomic Spectra  96
4-5 Bohr's Postulates  98
4-6 Bohr's Model  100
4-7 Correction for Finite Nuclear Mass  105
4-8 Atomic Energy States  107
4-9 Interpretation of the Quantization Rules  110
4-10 Sommerfeld's Model  114
4-11 The Correspondence Principle  117
4-12 A Critique of the Old Quantum Theory  118
ix CONTENTS
5 SCHROEDINGER'S THEORY OF QUANTUM MECHANICS  124
5-1 Introduction  125
5-2 Plausibility Argument Leading to Schroedinger's Equation  128
5-3 Born's Interpretation of Wave Functions  134
5-4 Expectation Values  141
5-5 The Time-Independent Schroedinger Equation  150
5-6 Required Properties of Eigenfunctions  155
5-7 Energy Quantization in the Schroedinger Theory  157
5-8 Summary  165
6 SOLUTIONS OF TIME-INDEPENDENT
SCHROEDINGER EQUATIONS  176
6-1 Introduction  177
6-2 The Zero Potential  178
6-3 The Step Potential (Energy Less Than Step Height)  184
6-4 The Step Potential (Energy Greater Than Step Height)  193
6-5 The Barrier Potential  199
6-6 Examples of Barrier Penetration by Particles  205
6-7 The Square Well Potential  209
6-8 The Infinite Square Well Potential  214
6-9 The Simple Harmonic Oscillator Potential  221
6-10 Summary  225
7 ONE-ELECTRON ATOMS  232
7-1 Introduction  233
7-2 Development of the Schroedinger Equation  234
7-3 Separation of the Time-Independent Equation  235
7-4 Solution of the Equations  237
7-5 Eigenvalues, Quantum Numbers, and Degeneracy  239
7-6 Eigenfunctions  242
7-7 Probability Densities  244
7-8 Orbital Angular Momentum  254
7-9 Eigenvalue Equations  259
8 MAGNETIC DIPOLE MOMENTS, SPIN, AND TRANSITION RATES  266
8-1 Introduction  267
8-2 Orbital Magnetic Dipole Moments  267
8-3 The Stern-Gerlach Experiment and Electron Spin  272
8-4 The Spin-Orbit Interaction  278
8-5 Total Angular Momentum  281
8-6 Spin-Orbit Interaction Energy and the Hydrogen Energy Levels  284
8-7 Transition Rates and Selection Rules  288
8-8 A Comparison of the Modern and Old Quantum Theories  295
9 MULTIELECTRON ATOMS—GROUND STATES AND
X-RAY EXCITATIONS  300
9-1 Introduction  301
9-2 Identical Particles  302
9-3 The Exclusion Principle  308
9-4 Exchange Forces and the Helium Atom  310
9-5 The Hartree Theory  319 9-6 Results of the Hartree Theory  x  322
9-7 Ground States of Multielectron Atoms and the Periodic Table  331
9-8 X-Ray Line Spectra  337
S1N3lNO0
10 MULTIELECTRON ATOMS—OPTICAL EXCITATIONS  347
10-1 Introduction  348
10-2 Alkali Atoms  349
10-3 Atoms with Several Optically Active Electrons  352
10-4  LS  Coupling  356
10-5 Energy Levels of the Carbon Atom  361
10-6 The Zeeman Effect  364
10-7 Summary  370
11 QUANTUM STATISTICS  375
11-1 Introduction  376
11-2 Indistinguishability and Quantum Statistics  377
11-3 The Quantum Distribution Functions  380
11-4 Comparison of the Distribution Functions  384
11-5 The Specific Heat of a Crystalline Solid  388
11-6 The Boltzmann Distributions as an Approximation to Quantum
Distributions  391
11-7 The Laser  392
11-8 The Photon Gas  398
11-9 The Phonon Gas  399
11-10 Bose Condensation and Liquid Helium  399
11-11 The Free Electron Gas  404
11-12 Contact Potential and Thermionic Emission  407
11-13 Classical and Quantum Descriptions of the State of a System  409
12 MOLECULES  415
12-1 Introduction  416
12-2 Ionic Bonds  416
12-3 Covalent Bonds  418
12-4 Molecular Spectra  422
12-5 Rotational Spectra  423
12-6 Vibration-Rotation Spectra  426
12-7 Electronic Spectra  429
12-8 The Raman Effect  432
12-9 Determination of Nuclear Spin and Symmetry Character  434
13 SOLIDS—CONDUCTORS AND SEMICONDUCTORS  442
13-1 Introduction  443
13-2 Types of Solids  443
13-3 Band Theory of Solids  445
13-4 Electrical Conduction in Metals  450
13-5 The Quantum Free-Electron Model  452
13-6 The Motion of Electrons in a Periodic Lattice  456
13-7 Effective Mass  460
13-8 Electron-Positron Annihilation in Solids  464
13-9 Semiconductors  467
13-10 Semiconductor Devices  472 CONTENTS
14 SOLIDS—SUPERCONDUCTORS AND MAGNETIC PROPERTIES  483
14-1 Superconductivity  484
14-2 Magnetic Properties of Solids  492
14-3 Paramagnetism  493
14-4 Ferromagnetism  497
14-5 Antiferromagnetism and Ferrimagnetism  503
15 NUCLEAR MODELS  508
15-1 Introduction  509
15-2 A Survey of Some Nuclear Properties  510
15-3 Nuclear Sizes and Densities  515
15-4 Nuclear Masses and Abundances  519
15-5 The Liquid Drop Model  526
15-6 Magic Numbers  530
15-7 The Fermi Gas Model  531
15-8 The Shell Model  534
15-9 Predictions of the Shell Model  540
15-10 The Collective Model  545
15-11 Summary  549
16 NUCLEAR DECAY AND NUCLEAR REACTIONS  554
16-1 Introduction  555
16-2 Alpha Decay  555
16-3 Beta Decay  562
16-4 The Beta-Decay Interaction  572
16-5 Gamma Decay  578
16-6 The  Mössbauer  Effect  584
16-7 Nuclear Reactions  588
16-8 Excited States of Nuclei  598
16-9 Fission and Reactors  602
16-10 Fusion and the Origin of the Elements  607
17 INTRODUCTION TO ELEMENTARY PARTICLES  617
17-1 Introduction  618
17-2 Nucleon  Forces  618
17-3 Isospin  631
17-4 Pions  634
17-5 Leptons  641
17-6 Strangeness  643
17-7 Families of Elementary Particles  649
17-8 Observed Interactions and Conservation Laws  653
18 MORE ELEMENTARY PARTICLES  666
18-1 Introduction  667
18-2 Evidence for  Partons  667
18-3 Unitary Symmetry and Quarks  673
18-4 Extensions of SU(3)—More Quarks  678
18-5 Color and the Color Interaction  683
18-6 Introduction to Gauge Theories  688
18-7 Quantum Chromodynamics  691
18-8 Electroweak Theory  699
18-9 Grand Unification and the Fundamental Interactions  706 Appendix A The Special Theory of Relativity
Appendix B Radiation from an Accelerated Charge
Appendix C The Boltzmann Distribution
Appendix D Fourier Integral Description of a Wave Group
Appendix E Rutherford Scattering Trajectories
Appendix F  Complex Quantities
Appendix G Numerical Solution of the Time-Independent Schroedinger
Equation for a Square Well Potential
Appendix H Analytical Solution of the Time-Independent Schroedinger
Equation for a Square Well Potential
Appendix I  Series Solution of the Time-Independent Schroedinger
Equation for a Simple Harmonic Oscillator Potential
Appendix J Time-Independent Perturbation Theory
Appendix K Time-Dependent Perturbation Theory
Appendix L The Born Approximation
Appendix M The Laplacian and Angular Momentum Operators in
Spherical Polar Coordinates
Appendix N Series Solutions of the Angular and Radial Equations for
a One-Electron Atom
Appendix O The Thomas Precession
Appendix P The Exclusion Principle in LS  Coupling
Appendix Q Crystallography
Appendix R Gauge Invariance in Classical and Quantum Mechanical
Electromagnetism
Appendix S Answers to Selected Problems
Index
Publicar un comentario

Ultimos Documentos en PDF